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SUMMARY 

Second-moment turbulence models focus directly on the transport equations for the Reynolds stresses rather 
than supposing the stress and strain fields to be directly linked via an eddy viscosity. This elaboration enables 
the effects of complex strains and force fields on the turbulence structure to be better captured. The paper 
summarizes the principal modelling strategies adopted for the unknown processes in these equations and 
presents the forms that have been found most useful in engineering calculations. Methods adopted for 
overcoming significant problems of numerical instability and lack of convergence compared with eddy- 
viscosity-based schemes are also presented. Applications involving momentum and heat transfer in complex 
flows are drawn from the advanced technology sectors of the power generation and aircraft industries. 
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INTRODUCTION 

The past decade has seen major extensions in the range of turbulent flows that can feasibly be 
resolved by a numerical solution of the Reynolds equations. Complex three-dimensional and 
recirculating flows directly relevant to industrial situations now fall within the scope of computer 
simulation. One outcome of this is the increasing use of commercially developed flow simulation 
software, often by persons with no detailed familiarity with computational fluid dynamics. These 
developments might give the impression that the CFD of turbulent flows is now a mature 
technology with relatively minor advances remaining to be made. Such an impression would, 
however, be very wide of the mark. 

At present the great majority of industrial flow computations are based on an eddy (or 
turbulent) viscosity representation of the Reynolds stresses, the most extensively used version' 
being one where the turbulent viscosity at a point is obtained from local values of the turbulent 
kinetic energy k and its rate of dissipation E, which in turn are obtained from transport equations 
solved simultaneously with those for the mean velocity components. It is, however, well 
established that eddy viscosity models do not correctly mimic the sensitivity of the turbulent 
stresses to streamline curvature and body forces or to situations where transport effects are large. 
The present paper is therefore concerned with the use of a different approach to determining the 
turbulent stresses: second-moment closure. With models of this type one obtains, by taking 
velocity-weighted moments of the Navier-Stokes equations, a set of exact equations for the 
transport of the Reynolds stresses themselves. The equations are unclosed, however, so the task of 
the turbulence model is to devise approximations for the unknown turbulence correlations in 
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terms of known or determinable quantities. Models of this type are, in principle, free from the 
objections noted above to eddy viscosity models. The first such scheme was put forward by Rotta,’ 
though it was not until the late 1960s and early 1970s that one began to see (e.g. 3 4 )  significant use 
of such models and then only for two-dimensional thin shear flow computations. For such cases 
the solution proceeds in a marching manner with the tlow streamlines well aligned with the grid 
lines. 

From a numerical point of view, use of a second-moment closure greatly complicates the task of 
solution compared with that when an eddy viscosity scheme is adopted. This is especially the case 
in situations where, due to flow recirculation, a fully iterative solution must be adopted over the 
flow domain. While the first application of this type of model to a recirculating flow appeared in 
1976,’ it is now acknowledged that the results were very severely contaminated by numerical 
diffusion. The more extensive use of second-moment closures in complex flows has thus had to 
await the invention of stable yet non-dispersive practices for discretizing convective transport; the 
development of stability-promoting practices in handling the Reynolds stresses; and, not least, the 
increase of computational power that allows routine computations of such flows to be made. 

The present contribution summarizes briefly the more widely adopted modelling practices in 
second-moment closure and the special numerical practices that can help osnvergence. Appli- 
cations drawn from the work of the CFD group at UMlST convey an impression of the 
capabilities of the present generation of second-moment closures in modelling complex flows. 

MATHEMATICAL REPRESENTATION 

Framework for  second-moment closure 

We write the Navier-Stokes equations for a fluid in turbulent motion as 

where U i  denotes velocity in direction x i ,  p the density, P the pressure and Fi an effective body 
force (due perhaps to buoyancy or rotation of the co-ordinate frame). The tilde superscript 
indicates ‘instantaneous value of’, which comprises a mean and turbulent part. Thus oi = Ui+ u,, 
where in general upper case letters (with no superscript) denote mean values and lower case letters 
turbulent quantities. The mean value of velocity U i  is obtained by applying the following 
operation to Oi: . r~ 

u.=- I ’ J O,@dt,  (2) 
2T lim T:: 

where @ is some user-chosen weighting function for which (1/2T) I T T  @dt = 1.  
In analysing turbulent flows involving combustion, where large variations of density occur, @is 

often chosen as $/p, e.g. Reference 8. Other forms of weighting or ‘conditioning’ functions are 
sometimes used in analysing intermittently turbulent flows. For the discussion in the present 
paper, however, the weighting function is taken identically equal to unity. Moreover, while mean 
density variations are admissible, it is assumed that turbulent fluctuations in density are 
unimportant except in the buoyancy force term Fi (the so-called Boussinesq approximation). 
Under this restriction the averaging of each of the terms of equation ( 1 )  for a statistically stationary 
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flow produces the Reynolds equation 

where are the Reynolds stresses for whose determination a path must be provided (the 
overbar simply implies the averaging of the product Uil(t as indicated in (2) with p= 1). 

In second-moment closure the first step is to obtain a set of transport equations for these stress 
components. Such a set may be obtained by multiplying (1) by uj and averaging and then adding to 
it the same equation but with the subscripts i and j interchanged. After a certain amount of 
manipulation and taking note that the fluctuating velocity field is incompressible, i.e. aui/axi = 0, 
we obtain the following equation describing the rate of change of uil(j: 

c, +(ujf;.+uif;.) 

+ P ( Z + % )  + i j  

- 2 p -  aui au. I 
ax, ax, (4) 

The equation is arranged so that each distinct physical process contributing to the change of uil(i 
appears on a separate line. In the right-hand column a short-hand symbol is given which, for 
brevity, we shall normally adopt in referring to these processes. We notice that the direct effects of 
mean shear in this equation ( P i j )  can be handled without approximation since the velocity and 
Reynolds stress fields are themselves the subject of conservation equations. The same is normally 
true of F,, though in the case of buoyancy Fij contains fluctuating density-velocity products for 
which an additional set of equations must be supplied. Space limitations preclude their inclusion 
in the present contribution: the interested reader is referred to Reference 9. 

The fact that major source terms in (4) are exactly determinable is the main reason to expect that 
closures formed at  second-moment level will capture the behaviour of the turbulent stress field 
with greater fidelity than eddy viscosity models. 

A simple closure of the Reynolds stress transport equation 

Apart from the minor contribution from viscous diffusion of G, the remaining processes in (4) 
cannot be handled exactly at  second-moment level and must be ‘modelled’. The processes in 
question are those of diffusion (d i j ) ,  viscous dissipation ( c i j )  and a non-diffusive pressure 
interaction, d i j ,  usually called the pressure-strain correlation. Surrogate forms devised to imitate 
the real processes will incorporate at  least some of the formal characteristics of the tensors they 
replace: dimensional homogeneity; rank, symmetry and contraction properties of the original 
form; invariance to the co-ordinate frame adopted for monitoring the flow development. One may 
also wish to insist that the approximation should give exactly the correct results in certain limiting 
cases where the magnitude of the original correlation is known (e.g. in isotropic turbulence). These 



966 B. E. LAUNDER 

formal constraints, however, need to be weighed against the benefits of simplicity (from both 
computational and conceptual viewpoints) and the inherent limitations of a second-moment 
closure which entirely disregards such features as intermittency. For those wishing to compute 
industrial flows, the interwoven principles of diminishing returns and receding influence should 
always be borne in mind. Despite what the literature may sometimes seem to suggest, turbulence 
modelling is in no danger of becoming just another branch of rational mechanics. 

In the present subsection we present a very simple set of approximations that is the only form to 
have been widely used in computing complex industrial-type flows. It is this version that has been 
adopted in most of the applications in the next section. 

Dissipation e i j .  The conventional (albeit not unchallenged) view is that the very fine-grained 
eddies which are essential to account for the destruction of turbulence energy by viscous action are 
formed by a large number of interactions in which large eddies are successively broken down into 
finer-scale motions. As this breakdown proceeds, the strong directional orientation imprinted on 
the larger eddies by the mean strain field gradually gets lost so that, by the time the scales are small 
enough for significant kinetic energy to be dissipated (implying an eddy Reynolds number of 
around unity), the motions are isotropic. In this event we can replace E~~ by 

Ei j  = idij&, 

where E = v(aui/axk)2 is the kinematic rate of dissipation of turbulence energy (v = p /p ) .  
The determination of E itself is one of the weakest points in second-moment closure. Although 

an exact equation for this correlation can be obtained from the Navier-Stokes equations by 
similar steps to those producing (4),’O the resultant equation does not in practice represent a useful 
starting point. The reason is that the quantities appearing in it all relate to interactions among the 
finest scales of motion present. Yet only in a legalistic sense is the rate of energy dissipation 
determined by these processes. The real controlling factor is the rate at which energy ‘cascades’ 
from large- to small-scale eddies. The interactions producing that transfer are larger-scale, 
essentially inviscid motions. Accordingly, in formulating a model equation for E, one relies heavily 
on analogy, intuition and experiment. The form usually adopted may be written 

The three terms on the right side of (6) are respectively diffusive, generative and dissipative in 
character. The diffusion process is modelled by the generalized gradient diffusion hypothesis of 
Daly and Har10w.~ The value usually adopted for c,-about 0.18-is typical of those chosen when 
applying this submodel to other processes. 

The forms of the generation and dissipation terms are directly analogous to those that appear in 
the turbulent kinetic energy equation (whose exact form is obtained by summing (4) with i = j and 
dividing by two). There is no very good physical reason to suppose that the rate of transfer of 
turbulent kinetic energy from large to small eddies is so directly related to turbulent energy 
generation (indeed, some alternative proposals will be mentioned later), but it is the simplest 
possible assumption and often leads to satisfactory results. The resultant predictions are highly 
sensitive to the choice of cel and ce2 : a change in either by 1 YO typically alters the computed rate of 
spread of a jet by 4%. What are usually regarded as ‘standard’ values are chosen by matching data 
for the decay of turbulence energy behind a grid and the rate of spread of a plane jet in stagnant 
surroundings. The diffusion coefficient c,, is then chosen to give a length scale variation for flow 
near a wall in local equilibrium consistent with the ‘universal’ semilogarithmic velocity profile. 
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One thus obtains 

c,~ = 1.44, c,’ = 1.92, C ,  = 0.18. 

Logic suggests that cE3 should be chosen equal to cel. While this choice is sometimes made, other 
(usually smaller) values are just as often chosen. It is an area where further work is needed. 

Pressure-strain correlation. The pressure-strain correlation contains within it two types of 
process that require modelling separately. This may be clearly seen by forming a Poisson equation 
for the fluctuating pressure p (by taking the divergence of the Navier-Stokes equations and 
subtracting the mean part). On integrating that equation and multiplying each side by the 
instantaneous strain and averaging, one obtains for a homogeneous field away from the vicinity of 
rigid boundaries’ where body forces are negligible 

where the primed quantities are evaluated at a distanceL from the point in question and the 
integration extends over all space (though in practice the contribution is limited to distances from 
the point comparable with the turbulent macroscale). Thus the first integral in (7) contains only 
turbulent velocities (4ij l  ), while the second (4i jz)  comprises linear mean-strain elements multiply- 
ing double velocity products. The two contributions are here referred to as the ‘turbulence’ and 
‘mean-strain’ parts of 4ij. The latter is also known as the ‘rapid’ term because some workers have 
used results from rapid distortion theory to model this process. From there, however, verbal 
simplification has reduced ‘rapid’ to ‘fast’ with the foreseeable result that the ‘turbulence’ part is 
now often called the ‘slow’ term. So much for the etymology. 

Considerable efforts are now being made in devising widely valid models of 4ijl  and 4ijz, work 
that springs principally from pioneering efforts of Lumley.” The industrial flow computations 
presented in the next section have so far mainly adopted the simpler intuitive versions noted below 
which are only loosely connected with the two integrals in (7). One of the most enduring models in 
second-moment closure is Rotta’s’ linear return-to-isotropy model of q ! ~ ~ ~ ~  : 

4 i j l =  -ClPEaij, (8) 
where aij  is the dimensionless stress anisotropy tensor (W-fd, =)/k.  For decaying 
anisotropic turbulence, with cij represented by (9, the above model actually causes a tendency 
towards isotropy only if c1 is greater than unity. If a constant value is to be chosen for this 
coefficient, the best choice seems to be close to 2.0. 

The best simple model for the mean-strain part of $i j  is known as the isotropization of 
production (IP) model? 

4 i j z  = - c z ( P i j - f d i j P k k ) .  (9) 
Its form is directly analogous to (8). If 4ij is regarded as turbulence’s taxation system, 4ijl is a 
wealth tax while 4ijz is an income tax-albeit with effectively negative taxation rates for members 
with less than the average wealth or income. 

Figure 1 shows the range of values selected for c1 and c2 by different workers: there is evidently a 
vast range, but it is clear that all choices of c1 and c2 cluster close to the line (1 -cz)/cl = 0.23. This 
is because for a simple shear flow in local equilibrium (i.e. where 4 P k k  = E )  the relative stress levels 
are uniquely a function of (1 - c2)/c1.  The entries for c2 = 0 are proposals which entirely neglected 
the 4ijz process, while the original proposal of Naot et d,l3 who proposed the largest value of c 2 ,  
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I Donaidson [ 3 ]  

Figure 1 .  c1-c2 map 

did not explicitly include a contribution from $ i j l  (though these workers also assumed 
cij=(uiuj/k)E-which is equivalent to choosing c1 = 1 if ( 5 )  is adopted for E ~ ~ ) .  In suddenly distorted 
isotropic turbulence one may show that c2 = 0-6 exactly and it is this marker that has generally led 
workers to opt for values of c2 in this region. A recent exception to this consensus is the 
recommendation of Yo~nis'~-c, =0.3, c1 = 3.0-a choice which gives more weight to the 
turbulence than the mean-strain part of &. This choice arose from the discovery that swirling 
flows were captured much better with this c~mbination. '~ 

There is, however, a good reason for not expecting (9), as it stands, to do well in predicting 
swirling flows. It is that Pi j  is not an objective tensor: its form depends on the reference frame of the 
observer. One might, for example, study the development of an axisymmetric swirling flow either 
in stationary cylindrical polar co-ordinates or in a frame that rotates about the symmetry axis. In 
that event P ,  will depend on the rate of rotation of the axis. Of course in a non-inertial frame a co- 
ordinate rotation source F ,  enters the equations but the sum of Pij and F,, is also dependent on the 
rotation rate. Only if we bring to this group the convective transport tensor C i j  from the left side of 
(2) do we arrive at a materially indifferent form. This consideration suggests that in place of P ,  one 
should really adopt Pi j+  F,- C i j  in (9), i.e. 

4 i j 2  = -c2 [Pij + Fi j - c i j -3d i j (Pkk-C , , ) ] ,  (10) 
since F k k  is zero. In a stationary reference frame in local equilibrium the original form is recovered. 
In fact our experience at UMIST suggests that Cij-$dijCk. makes a negligible contribution except 
in swirling flows. 

Another widely used, interesting but not recommended version of 4ij2 is the more elaborate 
quasi-isotropic (QI) model:16.' ' 

where 
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The formula has been obtained in many different ways by various groups. The simplest way is to 
assume that 4ij2 is expressible in terms of the most general sum of linear products of Reynolds 
stress and mean-strain elements. All but one of the coefficients are then fixed by applying 
symmetry, continuity and other consistency constraints; details are given in References 18-20. The 
QI model with y = 0.4 achieves reasonable success in thin shear flows but gives spectacularly bad 
results in swirling flows.2’ Current research suggests that the problem with (1 1) is not that the 
formal consistency analysis is inappropriate to turbulence modelling but rather that the basic 
form adopted for the analysis is insufficiently general. 

Wall effects on the pressure-strain correlation 4;. The integral expression for 4ij in (7) is 
complete only for flow regions uninfluenced by rigid boundaries. Walls, and indeed density 
interfaces in fluids generally, reflect pressure fluctuations, thus interfering with the normal 
redistributive actions of the pressure-strain correlation. This ‘echo’ effect is accommodated by the 
inclusion of terms whose strength depends on the ratio of the local turbulent length scale to the 
distance from the wall, x n ,  i.e. k 3 / 2 / ~ ~ n .  Most workers have adopted simply a linear function of this 
parameter, though Naot and Rodi” found better agreement in their study of duct flows by using 
(k3’’ /~x,)’ .  This has the effect of making the wall echo effect die off more rapidly. The usually 
adopted form for the complete wall reflection term is23 

where n, is the unit vector normal to the wall and, as noted above, the exponent ‘a’ is taken as 1 or 
2. Equation (12) should be regarded simply as an empirical fit to the observed effects of the wall. In 
fact, with this form it is not entirely possible to mimic the changes that the wall provokes. For 
example, in a simple shear flow (12) redirects a fraction of the energy earmarked for the direction 
normal to the wall equally to the two components parallel to the surface. Experiment suggests, 
however, that virtually all the energy that the normal fluctuations lose ends up in the streamwise 
component. Nevertheless, (12) has proved an adequate model in many cases. If one is dealing with 
flow in a plane channel, one finds a contribution from the two opposite walls; in a square channel 
all four sides make a contribution. The separate effects of each wall can be superimposed linearly. 
There is at present no scheme available for handling complex boundary topography such as 
grooved or ridged surfaces. While this is certainly a handicap in studying passive devices for near- 
wall flow management (e.g. for drag reduction or heat transfer enhancement), the latest models of 
4ij now emerging carry much of the echo effect in the wall boundary condition; accordingly, the 
importance of an explicit wall correction process, such as ( 1  l), is reduced. 

Diffusion dij. The Daly-Harlow4 generalized gradient diffusion hypothesis was mentioned in 
connection with the diffusion of E. It is also the model usually adopted for modelling stress 
diffusion, i.e. 

the constant diffusion coefficient c, taking a value of approximately 0.22. Although originally 
advanced as a model of the part of di j  involving triple velocity products (cf (4)), it should be 
regarded as a composite model for both pressure- and velocitydriven diffusion. (As a model ofjust 
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the triple velocity product, the kernel of the a/axk operator in (13), unlike w, is not indifferent 
to the sequencing of the i ,  j, k indices.) 

Equation (13) is not a particularly accurate model of di j  but is relatively simple and is usually 
good enough for the purposes in question, diffusive transport being decidedly less crucial in the 
Reynolds stress budget than either c$ij or t i j .  It is not just that there are many flows where d ,  is very 
small; even where it is substantial, because the term acts as a spatial redistributor of Uiuj rather 
than as a source or sink, it tends to have a relatively small effect on the rates of spread of a shear 
flow. 

While there are exceptional cases-particularly where interfaces develop in a turbulent field- 
where modelling stress diffusion is quite critical, second-moment closure for industrial flows has 
often adopted simpler rather than more elaborate representatives of d,. The widely used algebraic 
second-moment (ASM) approach approximates both diffusive and convective transport in terms 
of the corresponding transports of k, the turbulence energy. The version proposed by R ~ d i ~ ~  is the 
one often adopted: 

__ ~ 

(14) 
U.U. U . U .  

IJ k k ,  rJ k k y  
C . . = L C  d . .  = ' J d  

where Ck and dk denote the convective transport rates of turbulent kinetic energy. A generalized 
version of (14)25 has also been used which seems to give a somewhat better approximation of C i j  
and d ,  at the cost of some sacrifice of simplicity and numerical s tab i l i tuhe  major simplification 
that results from making such an approximation is that differentials of uiuj are entirely eliminated 
from the resultant closed form of (4). Thus one arrives at a set of algebraic rather than differential 
equations for the stresses. For example, if the approximations contained in equations (5), (8), (9) 
and (14) are introduced, one arrives at the following form: 

~ ~ 

Thus turbulent transport equations are required only for the evolution of k and E. 

While examples of ASM approaches will be given in the next section, in the writer's group (and 
also in several other groups in the UK) they are now being replaced by differential schemes. The 
problem with (14), or any of the alternatives, is that C,, which (as discussed above) is not an 
objective tensor, is being approximated by a form that is. Fu et a1.26 have reported the very serious 
differences that arise between differential and algebraic representations of transport in swirling 
flows. These have forced us to abandon the use of ASM schemes in these flows despite the 
advantage of computational economy that they bring. 

Remarks on the numerical solution with second-moment closures 

Our experience at UMIST is that there are so many differences in solution strategy required 
between including a second-moment closure and an eddy viscosity model into a 3D or elliptic 2D 
solver that one invariably produces two different computer programs rather than one code with 
different subroutines. Most aspects of our finite volume solution methodology with second- 
moment closures have been extensively considered by Huang and Leschziner2' and Leschziner.28 
Here, therefore, only brief remarks are provided. 

We note first that if one adopts the usual staggered velocity/pressure node cluster, numerical 
stability is increased and the amount of interpolation required decreased if the stresses are also 
staggered as shown in Figure 2.' The normal stresses are located at the scalar (pressure) node while 
the off-diagonal components are positioned so that they lie on the boundaries of the control 
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Figure 2. Staggered node cluster for Reynolds stresses and velocity 

volumes of the velocity components in whose conservation equation they appear. Note that UU 
appears in the conservation equations for both LI and V and is located at the appropriate 
intersection of the U and V control volumes. 

In a three-dimensional flow we will find each stress component appearing in the budget 
equations for many of the other components. This very strong intercoupling suggests that one 
should opt for a simultaneous solution of the six components at a point. However, such a direct 
approach is spectacularly unstable partly, perhaps, because the stresses are scattered. The strategy 
evolved in Reference 27 is first to solve for the three coincident normal stresses, interpolating as 
necessary ‘old’ values of the shear stresses. When updated values of the normal stresses have been 
obtained at all nodes, the off-diagonal components are obtained by a pointwise sub~titution.’~ 

An alternative grid layout is under evaluation at UMIST to allow all the stresses to be handled 
in the same way; we refer to it as the ‘semi-staggered mesh’ and it is illustrated in Figure 3: in a 
three-dimensional flow there are just two locations for dependent variables instead of seven for the 
usual scheme shown in Figure 2. The velocity components are all stored at the same location, 
which is offset from the scalar node at which pressure, energy dissipation rate and all the Reynolds 
stress components are calculated. If one needs to solve the thermal energy equation, this variable is 
also evaluated at the scalar node, while the turbulent heat fluxes are evaluated at the velocity 
nodes. This layout appears to offer a number of advantages over that of Figure 2, though there are 
also drawbacks, notably the larger number of velocity nodes that appear when the continuity 
equation is formulated. 

The above discussion has concerned the spatial staggering of stress components relative to the 
velocity field. We note in passing that in time-dependent flows it has been found advantageous to 
stagger the stresses in time as well as space with respect to the velocity field.30 

Figure 3. Semi-staggered mesh 
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Special measures also need to be adopted in the momentum equations when a second-moment 
closure is employed. With an eddy viscosity turbulence model there are strong diffusive 
connections with adjacent nodes and this feature is helpful in maintaining stability. The 
straightforward approach with a second-moment closure would be to incorporate the forces due 
to the Reynolds stresses acting on the control volume faces as sources and sinks. That approach, 
however, is highly unstable owing to the stiffness of the resultant equation set. One needs to build 
back into the difference equations something of the strong internodal coupling that is present in 
eddy viscosity schemes. Now, in the U i  momentum equation the Reynolds stress contribution is 
- ap u,Uj/axj.  With an ASM approach the algebraic formula linking the stresses and strains will 
contain a term involving a U i / a x j .  One may then designate the coefficient of that strain component 
as a pseudo-viscosity, f i i j  say (in general there will be three such terms in each of the Ui equations 
corresponding to the three x j  co-ordinate directions). Such terms are inserted in the solver as 
viscous-like contributions, i.e. the mean velocities in them are handled implicitly, while the 
remaining elements of the ASM formula are handled as explicit sources. 

A differential stress model does not of course contain, at the level of the continuum transport 
equation for m, any part interpretable as a pseudo-viscosity (because the equation describes 
rates of change rather than prevailing levels of w). Nevertheless, once one forms the difference 
equations for UiUj there will be terms directly analogous to those appearing in the ASM that can be 
removed and treated in the solver via an effective diffusive coefficient. Of course f i i j  will be non- 
isotropic and will usually not exhibit symmetry in i and&* but this feature brings no added 
problems. 

Boundary conditions 

While the application of boundary conditions with second-moment closures is not appreciably 
different from the practices for an eddy viscosity scheme, it is often a sufficiently vexing task for 
some brief remarks to be in order. 

Plane or axis of symmetry. This is the simplest case. Axial velocity, E and normal stress 
components approach the axis with zero gradient, while radial and circumferential velocities and 
shear stresses vanish. 

Free surface (e.g. at a waterlair interface). This is often incorrectly treated as a plane of 
symmetry. The normal stress perpendicular to the free surface vanishes. The appropriate 
boundary condition for E is not entirely resolved: &lay provides a neutral constraint that exerts 
little effect away from the immediate vicinity of the surface. Far more important than boundary 
conditions is the inclusion of the 'echo' effect (see earlier). 

Entraining boundary. This involves prescribed levels of the turbulent stresses according to the 
conditions in the fluid being entrained. Typical fluctuating velocity levels would be in the range 

where U ,  is the freestream velocity. A level of k''2/U, as low as 1% 
will normally have no discernible effect on the flow developments within the computation domain. 
As a word of warning, I have often been assured by students and others unable to make sense of 
their predictions that they had assigned a very low turbulence intensity level (of about 1%) to the 
entrained stream. On checking the input file, however, it has emerged that k / U ;  was set to 

< k'I2/U, < 5 x 

* jiij is not a tensor. 
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rather than its square root. Thus turbulence energies 100 times stronger than intended were 
entering. Unless other information is available, it might be supposed that the entrained fluid has 
an isotropic stress field, i.e. G= 56,k. For ‘stagnant’ surroundings the stresses should differ from 
zero only by the small amount needed to prevent ovedow/underflow in the statements in which 
they appear. 

Prescribed injlow condition. Ignorance of the flow conditions in the inlet stream can cause great 
unccrtainties in the predicted flow pattern. For example, one’s interest may be in the flow and 
surface heat transfer arising from the oblique impingement of a cold jet onto a plane hot surface. 
One would like to place one boundary of the domain at the exit plane of the jet. However, the 
surface heat transfer may be much affected by the turbulence at  discharge from the pipe, which in 
turn depends on the pipe length, its surface texture, whether the pipe is curved or straight, etc. The 
only advice in these cases is to take what guidance one can from experimental data of similar flows 
and make trial computations to ascertain the effect of varying the inlet values of turbulence 
quantities by, say, 50%. If the variations in the solutions that result are unacceptably large, the 
only recourse is to extend the solution domain sufficiently far to make the features of interest less 
sensitive to the prescribed inlet conditions; for the oblique jet example this would mean extending 
the calculations into the pipe itself or performing a separate set of calculations of the flow within 
the pipe. 

OutJow conditions. In most flows the prescription of a zero gradient in the direction of the 
outflowing stream is satisfactory. 

Wall boundaries. The no-slip condition at a wall ensures that the turbulent stresses vanish 
there. Consequently, within a thin sublayer, viscous transport is of considerable importance. To 
predict the detailed behaviour within this viscosity-affected sublayer requires that the turbulence 
model should appropriately reflect these viscous influences on the transport processes. Although 
several groups are working on the development of such models at present, no entirely satisfactory 
scheme is available even for a flow as uncomplicated as fully developed pipe flow. In making 
industrial-type computations of wall-bounded flows, therefore, one of two approaches is adopted 
at present. Either one employs ‘wall functions’, which provide expressions for the effective overall 
conductances of the near-wall ~ u b l a y e r , ’ ~ . ~ ~  or one adopts a simpler model of turbulence within 
this region. In the examples presented in the next section, comments on the particular near-wall 
treatment adopted will be made as each example is considered. 

SOME ILLUSTRATIVE APPLICATIONS OF SECOND-MOMENT CLOSURES 

The examples selected are drawn from those generated by UMIST’s CFD research group. This 
choice is made to allow a selection of examples with identical forms of turbulence model. 
A complementary set of examples has recently been reported by Leschziner.28 Efforts in the same 
direction are underway at a number of research centres around the world. In the U.K. similar 
types of computation are being made by Dr. W. P. Jones and Dr. J. J. McGuirk at Imperial 

and Professor Swithenbank’s group at  Sheffield, in Germany by Professor W. Rodi at 
the University of Karlsruhe, while in France, particularly in connection with aerodynamic 
phenomena, the efforts of Professor H. Ha Minh, Dr. D. VanDromme, Dr. J. Delery and 
Dr. J. Cousteix should be mentioned. In the U.S.A. the application of second-moment closures to 
industrial flows is probably most advanced in industry itself, with, inter a h ,  G M  and G E  both 
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mounting strong efforts, while Creare Inc. have produced the commercial code FLUENT which 
contains an ASM model of turbulence. 

In many of the examples considered below, numerical solutions have been obtained both with a 
second-moment closure and with a k--E eddy viscosity model and in these cases results from the 
two methods are compared. 

Conjned separated frows 

Two examples are chosen here from the many different flows examined in the Ph.D. 
programmes of Kadja3' and Yap.36 The first flow considered is the shear layer arising from the 
abrupt reduction in diameter of a centre-body mounted in an axisymmetric diffuser (Figure 4). 
This configuration has been examined experimentally by Lea.37 The effect of the adverse pressure 
gradient on the shear flow can be adjusted by moving the centre-body relative to the diffuser 
section. Kadja's computations of this flow were made on a 44 (streamwise) x 36 (radial) mesh for 
both an algebraic second-moment closure and the standard k--E eddy viscosity model with a 
standard wall function practice used in each case for the near-wall boundary condition. Moreover, 
for each turbulence model, two practices for discretizing convective transport were adopted the 
non-diffusive QUICK scheme of Leonard38 and P a t a n k a r ' ~ ~ ~  variant of upwind differencing, 
PLDS. It is seen from Figure 5(a) that while there is some effect of the discretization scheme (our 
experience over the past six years leads us unequivocally to prefer the QUICK  result^^^.^^), a 
larger factor on the reattachment point is the choice of turbulence model. While both models give 
reattachment lengths somewhat less than the measurements-a feature common to all the various 
back-step configurations examined in Reference 35-the ASM results do considerably better. The 
effect that the different predicted reattachment points have on the static pressure rise on the 
diffuser wall is shown in Figure 5(b). For both positions of the centre-body the ASM calculations 
achieve an appreciably better account of the variation of pressure coefficient along the diffuser 
wall. 

Heat transfer coefficients in separated regions are generally much higher than in attached shear 
flows, a feature that is often exploited in situations where high heat fluxes are required. The actual 
level of heat transfer coefficient is greatly dependent upon the model of turbulence in the 
immediate vicinity of the wall and Yap36 discovered he was unable to achieve satisfactory 
agreement with a wall function treatment. Instead, a version of the low-Reynolds-number k--E 
eddy viscosity mode142*43 was used to span the near-wall sublayer, being merged either to an ASM 
or an EVM scheme at a short distance from the wall where viscous effects were negligible. In these 
calculations the turbulent heat fluxes were obtained either by assuming a turbulent thermal eddy 

-1 
Figure 4. Apparatus for study of separated shear layer developing in conical diffuser 
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diffusivity of 1/0.9 times the turbulent kinematic viscosity (i.e. a turbulent Prandtl number of 0-9) 
or, for the ASM calculations, by again invoking the generalized gradient diffusion hypothesis 

k- ao __ 
uie=  -co-uiuk -, 

E ax,  

where Band 0 refer to fluctuating and mean temperatures and the diffusion coefficient c, takes the 
value 0.3. Figure 6 shows for two Reynolds numbers the resultant profile of Nusselt number 
downstream of an abrupt 2: 1 enlargement in pipe diameter. The flow in the small pipe was fully 
developed and unheated, while the wall temperature in the larger pipe was maintained at  a 
uniform temperature some 10°C above that of the entering stream.” Measurements suggest that 
the peak level of Nusselt number occurs at the reattachment point and, as is seen from the figure, 
actual levels are four to five times greater than the fully developed value that would be reached far 
downstream. The A S M  computations reproduce significantly better than the EVM computations 
the shape of the Nusselt number curve, including the dependence of the maximum on the Reynolds 
number; they also give the location of maximum heat flux as occurring at the reattachment point, 
whereas with the EVM the latter is more than one step height downstream of the former. 
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x l H  x IH 

Figure 6. Variation of Nusselt number downstream from an abrupt 2 : l  enlargement in pipe diameter: +, 
 measurement^;^^ -, ASM; ---, EVM36 

Swirling flows 

Swirling flows provide an important and challenging class of axisymmetric shear flows. The 
performance of swirl combustors and cyclone separators depends crucially on the turbulent flow 
interactions taking place within them. Here the flow considered is the swirling axisymmetric jet in 
stagnant surroundings measured by Sislian and Cusworth4' by laser-Doppler anemometry. The 
swirl level at discharge was high enough to cause an extensive region of flow recirculation near the 
axis extending into the discharge pipe itself. Computations reported here were obtained from a full 
differential stress closure46 since, as noted in the previous section, the ASM concept fails badly in 
strongly swirling flows. Figure 7 compares the measured development of the axial and swirl 
velocity profiles at four stations downstream of the discharge. The standard isotropization of 
production model (IPS) leads to appreciably too little mixing so the recirculating region on the 
axis persists too far downstream while the swirl velocity decays too slowly. The modified 
coefficients proposed by Younis14 (cl = 3.0, c2 = '3) bring some improvement but the closest 
agreement results from IPC, the convection-modified version, equation (10). 

Flows through rotating ducts 

The field of turbomachinery provides many practical examples of turbulent flow through 
rotating passages. In this class of flows one finds important contributions from Coriolis forces that 
affect both the mean flow and the turbulent stresses. Experimentally it is usually hard to separate 
these two contributions. For one case, however-that of fully developed flow between (effectively) 
infinite rotating parallel planes-the Coriolis forces on the mean flow are exactly balanced by 
static pressure gradients. Thus any differences in the flow pattern from that of the corresponding 
non-rotating flow are unequivocally due to effects of Coriolis forces on the turbulence. If we rotate 
our co-ordinate frame, an effective source Fij  enters the Reynolds stress transport equation given 
by 

__ - 
F i j =  - 2 @ k ( u j u m & i k m + U i l ( m  Ejkm),  (17) 

where Qk is the co-ordinate rotation vector and &ik,,, the third-rank altersating tensor. Thus, for the 
co-ordinate system shown in Figure 8, a term - 4 Q E  appears in the u2 equation while the same 
term with opposite sign is present in the u" equation. Now, in the adopted co-ordinates, the shear 
stress UO will be negative near the pressure surface and positive near the 'suction' surface. Thus we 
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Figure 7. Development of axial and swirl components of mean velocity: 13, 0,  measurement^;^' __  computation^^^ 

Figure 8. Co-ordinate frame for rotating duct 

should expect that 7, the fluctuating component primarily responsible for turbulent mixing, will 
be increased near the pressure surface and decreased near the suction. Figure 9 compares the 
predicted profile of this quantity4' obtained from a full second-moment closure (using wall 
functions) with that found from the large-eddy simulation of Kim:48 the departures from the non- 
rotating case are evidently well captured by the second-moment closure. The modification of the 
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Reynolds stress field in turn produces a strongly asymmetric distribution of mean velocity and a 
corresponding effect on the wall shear stress. Again the changes are broadly in line with the 
available measurement~.~~ As a footnote, we remark that had the standard k--E eddy yiscosity 
model been used to compute this flow, an entirely symmetric pattern would have resulted since the 
turbulence energy generation rate is entirely unaffected by rotation. 

In practical situations, channels are of finite extent in the direction of the rotation axis and thus 
secondary flows are induced. Figure 10, for example, shows the computed secondary flow pattern 
and axial velocity contours obtained5' for flow in a circular pipe in orthogonal mode rotation for 
a Reynolds number of 25000 and a rotation number of 0-183, levels typical of those found in the 
internal cooling holes in gas turbine blades. The turbulence model employed was the standard 
ASM closure, but near the wall, in place of the wall functions adopted in the plane channel study, 
Van Driest's5' version of the mixing-length hypothesis was used. This replacement was introduced 
because, due to the secondary velocity peaking so near the wall, very near the wall the mean 
velocity vector undergoes a rapid change in direction with distance from the wall, a feature which 
the coarse-grid wall-function approach is not successful at reproducing. Detailed experimental 
data are not available for this configuration but Reference 52 has recorded the effect of rotation on 
the overall streamwise pressure gradient in the tube, thus enabling the mean friction factor cf to be 
determined. They found their data were well correlated by the equation 

cf /cfo = 0.942 + 0.058 (Ro' (18) 

which is shown as the solid curve in Figure 10. Here cfo is the friction factor at the same Reynolds 
number (Re) without rotation and Ro is the rotation number, defined as pipe diameter times 

Figure lqa). Axial velocity contours and secondary flow vectors obtained from ASM c o m p ~ t a t i o n ~ ~  

1 2 3 4 5 6 7 8 9 1  2 3 4 5 6 7 8 9 1  2 3 4 5 6 7 8 9 1  2 3 4 5 

X I O O  X I $  x1o2 xio' 

Figure lqb). Measured and computed effects of rotation on friction factor: --, equation (18), correlation of 
experimental data; symbols, computations at two Reynolds numbers 
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angular velocity divided by bulk mean velocity. Predictions resulting from the ASM computations 
of Reference 50 are shown by symbols. There is indeed an extremely close correspondence between 
the two. 

Flow around bends 

The code developed for flow in rotating straight ducts above can also be applied to bend flows 
(whether rotating or stationary). This class of flows is the focus of our final comparison. The flow 
in this case is three-dimensional and, depending on the application, between 100 and 150 
streamwise planes have been employed to resolve accurately the streamwise development. From 
the several test cases e ~ a m i n e d ~ ~ ~ ' ~ ~ ' ~  we consider the flow development around a 180" bend of 
square cross-section for which Chang et a/." have reported detailed experimental data. A 
particularly interesting feature of this flow is that by halfway around the bend axial velocity 
profiles along lines parallel to the symmetry plane develop double peaks due to the secondary 
motion. The initial computational studies of this f l o ~ , ' ~  which adopted wall functions and the k-.e 
EVM, entirely missed this feature. We have therefore repeated the computations, replacing the 
wall functions by a fine near-wall grid in which the mixing-length hypothesis was employed. In the 
core region results have been obtained with both the standard k--E EVM and ASM treatments. 
Streamwise velocity profiles obtained in Reference 54 at a position 130" from entry to the bend are 
shown in Figure 11. The inclusion of a fine-grid/mixing-length treatment over the sublayer itself 
brings a considerable improvement in the realism of the prediction compared with that obtained 
in Reference 56: significant double maxima in velocity now appear in the computations. The 
calculated behaviour obtained with an ASM treatment, however, is in significantly closer accord 
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Figure 11 .  Streamwise velocity profiles at 130" station in square-sectioned U-bend. Comparison of ASM and EVM 
performance: 0,  experiment^;'^ -,  computation^^^ (left curves are ASM results) 



MODELLING TURBULENT INDUSTRIAL FLOWS 98 1 

with the reported experimental data. In fact the streamwise velocity profiles are to a large extent 
shaped by the secondary flow pattern and we note in Figure 12 a considerable difference between 
the secondary flow vectors for the two models. The relative weakness of the viscous-type linkages 
with neighbouring nodes associated with the ASM treatment makes it easier for the flow to break 
up into multiple secondary eddies than with an eddy viscosity model. As we see in Figure 12, not 
only is an additional eddy present with the former scheme but the secondary eddies are also rather 
more distinct. Although direct experimental data are not available, there seems little doubt that 
the pattern predicted with the ASM is closer to the actual flow. 

PROSPECTS 

The previous section has presented a sample of the complex shear flows computed in the last 18 
months at UMIST. While the writer would admit to having biased his selection slightly in favour 
of flows showing the better agreement with experiment, the relative performance of the second- 
moment and eddy viscosity schemes suggested by the comparisons is a balanced one. Sometimes 
an eddy-viscosity-based computation gives an entirely satisfactory result; and sometimes a 
second-moment closure prediction seriously fails to mimic the real flow; but hardly ever does the 
standard second-moment closure give a worse result than the standard k--E eddy viscosity model. 
Thus a changeover from the latter model (where most of today’s industrial flow calculations are 
performed) to the former offers the assured prospect of greater predictive realism. 

Yet, given that computations with a Reynolds-stress-based turbulence model will probably 
require between 50% and 150% more computer time than a two-equation eddy viscosity model, 
can their accuracy not be improved still further to give greater justification for the added expense? 
The great amount of effort directed at fundamental model improvement rather than application 
suggests that the modelling community believes the answer to be affirmative. In closing, therefore, 
a few paragraphs are devoted to giving the flavour of this research. 

In the second section both the turbulence and the mean-strain part of bij were modelled by 
forms linear in the Reynolds stress. However, the exact integral for 4ij l  (see equation (7 ) )  explicitly 
suggests a non-linear form. We might also expect some non-linear effect in 4ij2 since the 
isocorrelation surfaces of the two-point velocity products will themselves be distorted by the 
anisotropy of the stress field. Various non-linear forms have been suggested for both processes. 
A generalized form for the turbulence part may be written 

a) b )  

Figure 12. Comparison of computed secondary flow vectors: (a) EVM; (b) ASM” 
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where A, is the second invariant aikaki and c1 and a are prescribed constants or functions 
of the stress invariants. These coefficients are determined partly by fit- 
ting experimental data and partly by applying formal constraints, for example by requiring 
that 4aa should vanish i f G  becomes zero. Most approaches to have taken a = 0, thus 
incorporating all the non-linearity in the dependence on c1 on A, and A, (zaikakjaji). As 
Lurnleyl2 has shown, the two-dimensional limit can be accommodated by noting that in this case 
the quantity A = 1 -Q(A2-A3)  vanishes identically. Thus a relationship of the form c, = c , ( A )  
will give the desired limit. However, our recent experience at UMIST suggests that, to capture 
adequately the non-linear characteristics of 4 i j l ,  the quantity CI in (19) must also be n ~ n - z e r o . ~ ~  

Shih and LumleyS7 have devised a quadratic form for 4ijz which, inter a h ,  also satisfies the 
two-dimensional limit. It may be written 

d i j 2  = - (0.6 +&A'") (Pi j -$bi jPkk)  -@A'I2(D. i j  i d i j D k k )  

Following a similar approach at UMIST,58 we have arrived at 

- CA, (Pij - Dij) + 3 a m i  a n j  ( P m n  - DmJ19 (21) 
which with r = 0.7 has been applied successfully in a number of homogeneous shear flows. The 
model has also been applied with interesting effect by Fu et in computing the swirling jet 
considered earlier. Although in this case the overall spread and decay were not particularly well 
captured, some features in the computed stress field, which in the earlier computations had been 
missed, were now correctly reproduced. The authors concluded that weaknesses in computing the 
energy dissipation rate were probably responsible for much of the remaining discrepancy between 
experiment and computation. 

Indeed, throughout the history of second-moment closures, the determination of E (or 
equivalently of a typical length or time scale of the energy-containing eddies) has been the weakest 
point in the model. The problem is the absence of a directly useful exact equation to serve as a 
framework for modelling. Numerous amendments to the standard form, equation (6), have been 
proposed, mainly to modify the generation process. These include: 

(1) the inclusion of an additional source term involving the mean v o r t i ~ i t y ~ ~ , ~ ~  
(2) the introduction of a source of the formf(Az)E2/k as a partial replacement for mean-strain 

(3) the addition of a term proportional to gradients in the energy dissipation and energy to 

In truth, one probably needs to include all the above influences to achieve the greatest width of 
applicability. While such an optimized form is probably still some way off, it seems that any one of 
a number of proposals is likely to bring a modest improvement over equation (6). 

contributions1 2 * 6 1  

prevent excessive length scales developing in separated near-wall 
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Finally, a few remarks are in order about second-moment closures for the near-wall ‘buffer’ 
region-‘low-Reynolds-number’ models as they are sometimes called. With the very simplest 
turbulence model-the mixing-length hypothesis-one has to reduce the mixing length in the 
buffer region to prevent excessive turbulent transport rates there. To this end, Van Driest’s 
damping function51 is commonly employed with the ‘universal’ co-ordinate y +  = py J ( ~ ~ / p ) / p  as 
the argument. In higher-order eddy viscosity models one also damps the turbulent viscosity by a 
function proportional to a local turbulent Reynolds number, p k 2 / p  say. When the modelling level 
was extended to second-moment closures, the same tactic was employed to bring about a 
transition from predominantly viscous to predominantly turbulent transport over the correct 
range of y + .  Yet, in fact, most of the ‘damping’ of the turbulent stress as the wall is approached is 
due not to viscous action but to the precipitate decline of 7, which in turn results from the cutting 
off of the energy supplied to it via $ij. Thus to model properly the dynamics of the buffer region, it 
is very important to adopt models of 4ij that satisfy the two-dimensional constraint discussed 
above. Work in progress at UMIST suggests that, with a proper respect for this limit, the need for 
genuinely viscous damping virtually disappears and, moreover, the strength of the wall echo 4; 
can be considerably reduced. Since the prospect of developing a general model of the wall echo 
process on highly non-planar surfaces is remote, this discovery is encouraging. 

Many of the most important applied problems in turbulence modelling in the next decade 
centre around the intelligent control and modification of this sublayer region, whether it be to 
enhance (or inhibit) heat transfer, prevent separation or reduce drag. While it is unlikely that 
riblets won the Americas Cup for the Americans in 1987, perhaps creative, applied CFD, 
incorporating buffer layer turbulence modelling, will help the Aussies regain it in 1991! 
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